
. RESEARCH PAPERS .

SCIENCE CHINA

February 2013 Vol. 0 No. 0: 0–0

doi:

Lighting virtual objects in a single image
via coarse scene understanding

CHEN XiaoWu, JIN Xin∗ & WANG Ke

State Key Laboratory of Virtual Reality Technology and Systems,
School of Computer Science and Engineering, Beihang University

Beijing 100191, China

Abstract

Achieving convincing visual consistency between virtual objects and a real scene mainly relies on the lighting

effects of virtual-real composition scenes. The problem becomes more challenging in lighting virtual objects in

a single real image. Recently, scene understanding from a single image has made great progress. The estimated

geometry, semantic labels and intrinsic components provide mostly coarse information, and are not accurate

enough to re-render the whole scene. However, carefully integrating the estimated coarse information can lead

to an estimate of the illumination parameters of the real scene. We present a novel method that uses the coarse

information estimated by current scene understanding technology to estimate the parameters of a ray-based

illumination model to light virtual objects in a real scene. Our key idea is to estimate the illumination via

a sparse set of small 3D surfaces using normal and semantic constraints. The coarse shading image obtained

by intrinsic image decomposition is considered as the irradiance of the selected small surfaces. The virtual

objects are illuminated by the estimated illumination parameters. Experimental results show that our method

can convincingly light virtual objects in a single real image, without any pre-recorded 3D geometry, reflectance,

illumination acquisition equipment or imaging information of the image.
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1 Introduction

Rendering virtual objects in real scenes with real illumination can greatly increase the realism of and

consistency between the virtual and the real. Lighting virtual objects using illumination from a real scene

is a hot topic in the computer graphics community [1, 2, 3, 4, 5, 6, 7] and has wide application in film

production, digital entertainment and photo editing, amongst others. For convenient usage, our objective

is to light virtual objects in a single real image automatically through illumination estimation.

Previous works on illumination estimation require manually computed geometry and reflectance values

(e.g., [8]) or light probes (e.g., [9]), which limit application. In recent studies of illumination estimation

from only a single outdoor image, a sun and sky doom model is typically used [1, 2] and cast shadows

via sparse representation are proposed [10]. Most recently, Chen et al. [5] applied geometry and intrinsic

components to estimate scene illumination. However, since this method randomly selects the small sur-

faces from the coarse geometry model, the outliers introduce inappropriate surfaces, thereby affecting the

illumination estimation accuracy. More constraints and optimization need to be taken into consideration.
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(a) Input (b) Result

Figure 1: Estimating the illumination of a scene to insert a virtual helicopter into a real scene. The

lighting effects of the virtual helicopter match those in the existing image and convincing shadows are

cast on the real scene rendered using the estimated illumination.

Great success has been achieved in video illumination estimation [3, 4, 6, 7]. Recently, Xing et al.

[6] proposed an image-based framework to estimate on-line the illumination parameters that change

dynamically in outdoor video sequences. They used an interactive initialization stage with a few brushes

to select areas with the specified normal. Liu et al. [7] estimated the relative intensities of sunlight

and skylight via a spare set of planar feature-points extracted from each frame. Although we cannot

use information from multiple video frames in our automatic single image composition task, their work

greatly inspired us to use normal and semantic constraints to refine the surface selection.

In recent years, scene understanding from a single image has attracted the attention of many re-

searchers. Estimation of scene geometry (e.g. [11]), semantic labels (e.g., [12]), and intrinsic components

(including shading and reflectance images, e.g., [13]) has achieved great success in some specific scenarios.

Scene appearance is mostly determined by the scene geometry, reflectance and illumination. We were thus

inspired by these scene understanding technologies to estimate scene illumination by means of current

scene understanding technologies. The estimated geometry, semantic labels, and intrinsic components

provide mostly coarse information, and are not accurate enough to re-render the whole scene. How-

ever, carefully integrating the estimated coarse information can lead to an estimation of the illumination

parameters of the real scene.

Thus, in this paper we propose a novel method for illumination estimation to light virtual objects in a

real scene by integrating the coarse information estimated by current scene understanding technologies.

Panagopoulos et al. [14] jointly recovered the illumination environment and an estimate of the cast

shadows in a scene from a single image. However, they required a coarse 3D geometry of the primary

object in the image (such as a motorcycles or a car). On the contrary, the input image for our scenario

is a larger scene without obvious primary objects. Whereas, Panagopoulos et al. employ a higher-order

Markov Random Field (MRF) illumination model, which combines low-level shadow evidence with high-

level prior knowledge, we use a simple local illumination model combining the estimated coarse geometry

scene model and intrinsic components of the input scene image.

Lalonde et al. [2] used the three most evident appearance cues (the sky, the vertical surfaces, and

the ground) to estimate the illumination in a scene, directly. Unlike this work, we first estimate the

coarse scene geometry and semantic labels. Next, the shading and reflectance images are estimated using

a simple non-linear regression method. Then, we use the normal and semantic constraints for triangle

surface selection. The selected surfaces and the shading image are used for illumination estimation

using RANSAC (RANdom SAmple Consensus) refinement [15]. Finally, we light the inserted virtual

objects using the estimated illumination (see Figure 1). This can be regarded as a step-by-step method

for estimating from the appearance cues, the geometry, semantic labels, and intrinsic components, and
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finally the scene illumination. Experimental results show that our method can convincingly light virtual

objects inserted into a single real image, without any pre-recorded 3D geometry, reflectance, illumination

acquisition equipment, imaging information of the image or human interactions.

The main contribution of this paper is a novel method for single image-based illumination estimation

to light virtual objects in a real scene. We integrate coarse information from scene understanding into

the illumination estimation framework.

2 Related work

In this section, we briefly review related work on three aspects: illumination estimation, scene under-

standing, and object relighting.

2.1 Illumination estimation.

The literature is rich in methods addressing the problem of illumination estimation from images or videos

[9, 16, 17, 1, 2, 3, 4, 5, 6, 7]. Several works estimate illumination with the help of a pre-recorded 3D

geometry model and reflectance, such as [17]. Our work relies on only a single image without exact 3D

information, such as geometry and specific reflectance models. Light probes such as a light sphere [9] or

fisheye camera [16] are located in the real scene to record the scene illumination directly. However, since

thousands of photos have already been taken, there may have not be an opportunity for placing light

probes in the scene.

For illumination estimation from outdoor images, Lalonde et al. [2] estimated scene illumination from

only a single outdoor image. They used a dataset of six million images to train the illumination inference

model and estimated a sun and sky doom model particularly for outdoor images. The three most evident

appearance cues (i.e., the sky, shadows on the ground and the varied intensities of the vertical surfaces to

estimate the direction of light) were used directly to estimate the illumination in the scene. However, with

the great achievements in scene understanding (such as geometry [18, 11, 12], semantic label [19, 12] and

intrinsic component estimation [13, 20, 21, 22]), we believe that these scene understanding technologies

can assist in estimating the scene illumination.

To the best of our knowledge, the most similar work to ours is that by Chen et al. [5]. They proposed a

method to estimate the illumination from a single image. Firstly they estimate the coarse scene geometry

and intrinsic components of the scene. Then, a sparse radiance map of the scene is inferred based on the

scene geometry and intrinsic components. However, they randomly select small triangle surfaces from the

coarse geometry model, which introduces inappropriate surfaces and makes the illumination estimation

inaccurate. Additionally, the normal and semantic constraints are not taken into consideration.

Xing et al. [6] proposed an image-based framework to estimate dynamically changing illumination

parameters of out door video sequences online for integrating a virtual object into the video of a real

scene. This approach requires very simple interaction at the initialization stage with only a few brushes

used to select areas with the specified surface normal, which are used to calculate the sunlight parameters.

Liu et al. [7] proposed a full image-based approach for on-line tracking of outdoor illumination variations

from videos captured with moving cameras. their key idea is to estimate the relative intensities of sunlight

and skylight via a sparse set of planar feature-points extracted from each frame. To address the inevitable

feature misalignments, a set of constraints are introduced to select the most reliable ones. Exploiting the

spatial and temporal coherence of illumination, the relative intensities of sunlight and skylight are finally

estimated through an optimization process. Although we can not use information from multiple video

frames In our automatic single image composition task, the work by Liu et al. greatly inspired us to use

normal and semantic constraints to refine the surface selection.

2.2 Scene understanding.

As surveyed in [5], there is great deal of literature that has addressed the problem of geometry estimation

from a single image. Hoiem et al. [18] used features such as color, texture, edge, and location to recover
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the surface layout (i.e. coarse surface orientation) from a single image. Saxena et al. [11] used similar

features to estimate the 3D scene structure directly from a single image, with good performance shown

for various test images. Liu et al. [12] estimated the depth of a single image with the help of predicted

semantic labels, while Gupta et al. [19] recovered a 3D parse tree of a single image through physical

reasoning. For our task, either of the methods in [11] and [12] can be used to output the coarse 3D scene

structure from a single image.

Intrinsic image decomposition, which was first introduced in [23], decomposes an image into a pixel by

pixel product of an illumination component and a reflectance component. This is an ill-posed problem

and open challenge that has attracted the attention of many researchers, with recent works such as

[13, 20, 21, 22]. Because this problem is ill-posed, automatic methods are challenged by the complexity

of natural images. Thus, Bousseau et al. [21] proposed a user-assisted approach to specify regions of

constant reflectance or illumination to guide intrinsic images decomposition. Although these methods

can only output a coarse shading image and a coarse reflectance image of the scene, they are adequate

for use in our illumination estimation method with the refinement procedure.

2.3 Object relighting.

Methods for lighting a synthetic object coherently with a real scene can be categorized as image data

based or 3D model based (such as [24]). To render some specific objects (such as rain streaks [25], a

human face [26], or the human body [27]) under various scene illumination conditions, researchers pre-

capture the light field data of the object using a variety of lighting, and then render them for a specific

scene illumination. For human face relighting, Peers et al. [28] employed a quotient image extracted from

two faces in the reflectance field database to transfer illumination to the input face. Jin et al. [29] used

local lighting contrast features to learn artistic lighting templates from portrait photos. However the

template is designed for classification and artistic evaluation, it is not suitable for relighting. Chen et al.

transferred the illumination of a single reference face image to the input face using edge-preserving filters

[30] and transferred the artistic illumination of masterpiece portraits to the input face using artist-draw

illumination templates [31].

However, for more general applications of object relighting, 3D models are often used. In the community

of augmented reality, which renders 3D models into real scenes, researchers use a simplified version of

the method in [9] to achieve real-time merging [32, 33, 34]. Pre-recording scene geometry or various light

probe in the real scenes are often used. Haber et al. [35] relighted objects by recovering the reflectance of a

static scene with known geometry from a collection of images taken under distant, unknown illumination.

However, the geometry of the scene is estimated from many images containing nearly the same objects.

Karsch et al. [36] proposed a method with only a small amount of user interaction to estimate scene

geometry and illumination. On the other hand, in our work the geometry is estimated by a pre-trained

classifier. The virtual object used in our work is a 3D model with textures, which is illuminated using

the estimated illumination parameters.

3 Lighting virtual objects

The workflow of the proposed method is illustrated in Figure 2. The estimation of scene properties

(geometry structure, semantic labels and intrinsic components), the ray-based illumination model, normal

and semantic constraints, and illumination estimation to light virtual objects are described in this section.

3.1 Estimation of scene properties

We first estimate the coarse geometry structure, semantic labels and intrinsic components of the input

real image.

Saxena et al. [11] and Liu et al. [12] inferred a pixel wise depth map and 3D geometry structure of

scenes from a single image. They used different image features with a similar MRF model. Saxena et al.

[11] used features of color, texture, edge, location, and so on, while Liu et al. [12] applied semantic and
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Figure 2: Workflow of our method. First we estimate the coarse geometry model and semantic labels of

the input image. The input image is decomposed into intrinsic components including a shading image and

a reflectance image. Then, we combine the coarse geometry model, the semantic labels and the shading

image of the scene to estimate the illumination parameters of a ray based illumination model. The normal

constraints and the semantic constraints are used to select the appropriate small surfaces from the coarse

geometry model. Finally, the virtual object is illuminated using the estimated illumination. The virtual

helicopter matches the input image in terms of lighting effects and casts convincing shadows on the real

ground. Although the estimated geometry, semantic labels, and intrinsic components are not accurate

in every pixel, the estimated illumination using via our illumination estimation algorithm is basically

correct.

geometry constraints in a simple linear regression method and use the same training set of [11]. Similar

to [5], in our implementation, either of the methods in [11] and [12] can be used to output the 3D scene

structure from a single image. The coarse semantic labels predicted in [12] can be used for our semantic

constraints in the surface selection stage. An example of the estimated geometry model and the semantic

labels is shown in Figure 3.

Our aim is to estimate illumination automatically from a single image. Thus, we adopt certain au-

tomatic methods for intrinsic component estimation [13, 20, 22], similar to that in [5]. Each of these

methods can be leveraged for our task of intrinsic component estimation . Thereafter, we refine the

estimation results based on the normal and semantic constraints by means of RANSAC refinement. An

example of the estimated shading image and reflectance image is shown in Figure 3.

We adopt the ray-based illumination model and sparse radiance map (SRM) as described in [5] (see

Figure 4)). We make the assumption that these sparse light sources can approximate the real scene by

combining the estimated light intensity. In an outdoor environment, the main light source is the sun.

Thus, a small number m of virtual light sources is sufficient to estimate the sun direction. In an indoor

environment, we can use a larger m to simulate multiple main light sources. We use the estimated ambient

light value as the value of the remaining points in the sparse radiance map to simulate the sky outdoors

and the other weak light sources indoors.

As shown in Figure 4, the light ray R in 3D space can be defined as:

R = ILL (1)

where IL is the intensity of light ray R and L represents the unit normal vector in the ray direction.

Suppose that the irradiance on surface sur caused by ray R is a combination of the irradiance caused by

ray R1 = IL1L1 and ray R2 = IL2L2:

IL1
L1 ·N + IL2

L2 ·N = (IL1
+ IL2

) ·N = ILL ·N (2)
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(a) Input (b) 3D geometry model (c) Geometry with texture

(d) Shading image (e) Reflectance image (f) Semantic labels

water building mountain Foreground
sky tree/bush grassroad/path

Figure 3: Estimation example: (a) input image, (b) 3D geometry model estimated by the method in

[12]. (c) model with the input image as its texture. (d) and (e) shading image and reflectance image,

respectively, estimated by the method in [13], and (f) predicted semantic labels according to [12].
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Figure 4: Sparse radiance map and ray combination (Eqs. 1, 2, 6, and 7). The sparse radiance map

contains m sparse and discrete directional light sources evenly distributed on half a sphere around the

scene and directed to the center point of the ground circle.

where N is the unit normal vector of the surface sur.

As described in [5], according to the intrinsic component decomposition, the intensity of an image

scene pixel on a surface can be approximately decomposed into the irradiance collected by the surface at

that point and the reflectance of the surface:

I = S ∗K (3)

where I, S and K are the pixel values of the input scene image, the shading image and the reflectance

image, respectively. For a Lambertian surface, the irradiance can be represented as [37]:

S = Ia +

m∑
i=1

ILi
Li ·N (4)

where Ia is the ambient light of the scene. ILi
and Li are the intensity and direction, respectively, of

the i− th ray reaching surface sur. m is the number of rays reaching surface sur, and N and K are the
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Figure 5: Normal and semantic constrains. We first use the normal constraint to eliminate those surfaces

that do not obey Eq. 6 and Eq. 7. Then, for the selected ones, we use the semantic constraint rules to

select more appropriate surfaces.

normal and the reflectance estimated in Section 3.1. Then we employ Levenberg-Marquardt algorithm

[38] to obtain the solution of minimization between the shading image and the estimated irradiance:

arg max
(Ia,I1,I2,...,Im)

ns∑
j=1

(Sj − (Ia +

m∑
i=1

ILi
Li ·N)) (5)

where Sj is the value of the shading image of the j− th 3D triangle surface estimated in Section 3.1, and

ns is the number of triangle surfaces used for illumination estimation.

3.2 Normal and semantic constraints

In real scenes, not all the surfaces satisfy Eq. 2. The surface should be visible to R, R1 and R2 (Eq. 6).

The cosine of the angles between the three rays and the surface normal N should be above zero (Eq. 7).

Thus, to use sparse light sources to approximate the illumination in real scenes, we would mostly choose

the surfaces satisfying Eq. 6 and Eq. 7 to estimate the sparse radiance map.

Vis(sur, L) = Vis(sur, L1) = Vis(sur, L2) = 1 (6)

L1 ·N > 0, L2 ·N > 0, L ·N > 0 (7)

Shadow and highlight areas often do not satisfy Eq. 6 and Eq. 7. Most light sources are located

immediately above of the scene. Thus, we select the surfaces whose normal orientations are almost

directly above by setting a threshold TN for the angle between the surface normal and the normal

perpendicular to the horizontal ground (see the left part of Figure 5). To prune some highlight surfaces,

we simply set a threshold TH for the pixel value in the input image.

In addition, in outdoor scenes, semantic labels can be used to add more constraints. For example,

surfaces on the road often face the light sources directly, whereas the lower parts of a building are always

occluded from the sun. Water is not an ideal Lambert area. Thus, taking the semantic labels of [12]

as an example, we add more semantic constraints according to the following rules (see the right part of

Figure 5):

(1)Do not select any surface on sky, water, trees/bushes or the foreground;

(2)Select surfaces on a road/path and the grass;

(3)Select the surface on the upper parts of buildings and mountains if there is sky above them.
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3.3 Illumination estimation for lighting virtual objects

However, the normal constraint and the semantic rules are not sufficient for pruning all the surfaces that

do not satisfy Eq. 6 and Eq. 7. This is mainly because the estimation errors can occur in the geometry,

semantic labels, and intrinsic component described in Section 3.1. Thus, we leverage the Random sample

consensus (RANSAC) algorithm [15] together with our surface selection scheme to refine the illumination

estimation by kicking out certain outliers.

We briefly describe the entire illumination estimation method combining the sparse radiance map, the

normal and semantic constraints, the Levenberg-Marquardt algorithm, and the RANSAC algorithm in

Algorithm 1.

The estimated I1, I2, . . . , Im from the sparse radiance map are considered as the main light sources. We

use the estimated ambient light value Ia as the value of the remaining points in the sparse radiance map.

Using the estimated sparse radiance map, we light objects in a real scene using off-the-shelf rendering

software. An example of the rendering result is shown in Figure 6.

Algorithm 1 Illumination estimation

Input:

The input image.

The estimated geometry model, semantic labels, shading image and reflectance image according to

Section 3.1.

Maximum iterations M , and error threshold TE .

Number of light sources to be estimated m.

Output:

The sparse radiance map of the input image.

i.e. (Ia, I1, I2, . . . , Im).

1: Set min error = MAXERROR. iterations = 0.

Select n triangle surfaces whose angle with the normal perpendicular to the horizontal ground is

greater than TN and whose pixel value in the input image is less than TH from the estimated geometry

model.

Use the three semantic rules to selects surfaces. Set appropriate TN , TH , and semantic constraint

parameters to ensure n/2 > m + 1.

2: Randomly select n/2 surfaces in 1. And use Levenberg-Marquardt algorithm to get the best-fit

(Ia, I1, I2, . . . , Im) described in Eq. 5. by setting ns = n/2.

Use the other n/2 surfaces to compute the fit error by setting ns = n/2:

Error =
∑ns

j=1(Sj − (Ia +
∑m

i=1 ILi
Li ·N))

iterations + 1. If Error < min error, set min error = Error.

3: If iterations > M or min error < TE

return (Ia, I1, I2, . . . , Im) with the min error.

Else go to 2.

4 Experiments

In this section, we present the estimated and rendered results using a varying number of light sources in

the sparse radiance map, the rendering results of various input images, and comparisons with random

surface selection [5] and the work of Lalonde et al. [2].

4.1 Number of virtual light sources

As depicted in Figure 7 and Figure 8, denote m as the number of the virtual light sources in the sparse

radiance map. Obviously, the larger m is, the greater the time is needed for the estimation process and

the closer the estimated sparse radiance map is to the real illumination distribution. An appropriate
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(a) Input (b) Result

Figure 6: Example of the estimation and rendering result. (a) input image, and (b) rendering a virtual

object in the image in (a).
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Figure 7: The time cost compared with the difference in the estimated sparse radiance maps. Note that,

the differences between m = 20 and m = 16, and m = 24 and m = 20 are relatively small. But when

m = 24, the time cost is much larger than when m = 20. The scene used for this analysis is depicted in

Figure 8.

(a) m=8, 4.7s (b) m=12, 4.8s (c) m=16, 6.3s (d) m=20, 6.8s (e) m=24, 14s

Figure 8: Estimated and rendering results with a varying number of light sources in the sparse radiance

map and the time costs. Note that the differences of (c), (d), and (e) are quite small.

m should be chosen according to the task. In the experiments, we observed that typically a small m is

sufficient to simulate the scene illumination in consumer photos. Increasing m increases the time cost of

the illumination estimation (Algorithm 1), although the difference between the rendered results decreases.

We tested m = 8, 12, 16, 20, 24. The rendering differences were calculated with respect to m = 12, i.e. the

Sum of Squared Difference (SSD) between the white balls rendered with the estimated sparse radiance

maps as shown in Figure 8 with m = 12 and m = 8.
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(a) Input (b) Geometry of [11] (d) Geometry of [12](c) Result with (b) (e) Result with (d)

(e) with [11] (f) with [12] (h) with [12] (g) with [11] 
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Figure 9: Comparison between using the methods in [11] and [12]. In the outdoor images, with semantic

constrains, the ground estimated in [12] is flatter than that in [11], which is more suitable for the

illumination estimation and shadow rendering in our task. In the user study, the subjects were invited

to rank the results as first or second according to the realism of the illumination effects of the virtual

objects. The average rank scores are shown, where lower ranks are better.

4.2 Surface selection and RANSAC refinement

For geometry structure recovery, Saxena et al. [11] used features of color, texture, edge, location, and so

on, while Liu et al. [12] adopted semantic and geometry constraints for simple linear regression method.

In our experiments, we observe that, with semantic constraints, more reasonable results can be inferred

(see Figure 9). With the surface selection scheme and RANSAC refinement described in Section 3.3 and

Algorithm 1, surfaces whose normal orientations are not almost above, the highlight surfaces, surfaces

in opposition to the semantic rules and some outlier surfaces are pruned. Although certain geometry,

semantic and intrinsic component estimation errors exist, the estimated results are more convincing with

such a refinement (see Figure 10). More results are shown in Figure 11.

User study. We carried out a small human factor experiment to ascertain the credibility of the

rendered results. We invited 22 subjects who come from different background (6 females and 16 males

aged between 18 and 30, some of whom were professional in applying visual effects for movie production)

to evaluate our results. In Figure 9 and Figure 10, three test images are used in each figure for the user

study.

For Figure 9, the subjects were invited to rank the results as first or second according to the realism of

the illumination effects of the virtual objects. The user study result shows that with semantic constraints

[12], more reasonable results can be inferred.

For Figure 10, the subjects are invited to rank the results between on and four according to the realism

of the illumination effects of the virtual objects. The average rank score of each result is shown below.

This user study shows that results with full constraints and RANSAC refinement are more convincing

than those obtained from previous steps.
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(b) +Normal constrain(a) Random Selection (c) +Semantic constrain

Selected Surfaces of (a) Selected Surfaces of (b) Selected Surfaces of (c)
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Figure 10: RANSAC refinement results (the stone lion and the dark yellow chair are virtual objects) (a)

result of random surface selection [5]. (b) result after some highlight surfaces are pruned in those surfaces

with normal orientations not directly above. (c) result using semantic constraints, and (d) result with

RANSAC refinement. The shadows on the ground in (d) are more convincing than those in (a), (b), and

(c). The selected surfaces of the images in the third line in (a), (b), (c), and (d) are shown below them.

In the user study, the subjects were invited to rank the results between on and four according to the

realism of the illumination effects of the virtual objects. The average rank score of each result is shown

below (the lower, the better).
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Input Result

(d)

(c)

(b)

(a)

Figure 11: More results of various input images. The virtual objects inserted in to the real scenes are:

(a) bicycle, (b) swing , (c) motorcycle, and (d) trash can.
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Figure 12: Quantitative evaluation using 83 images taken from the Webcam Clip Art Dataset [39].

Cumulative sun position error (angle between estimate and ground truth directions) for various refinement

steps. The final RANSAC refinement outperforms the previous steps and those by Lalonde et al. [2].

4.3 Comparison with related work

Chen et al. [5] randomly selected small surfaces without taking the normal and semantic labels into

consideration, thus limiting the performance of their illumination estimation. Lalonde et al. [2] used a

dataset of six million images for training an illumination inference model and estimated a sun and sky

doom model for outdoor illumination. They used the three most evident appearance cues directly to

estimate the illumination in a scene. A quantitative evaluation using 83 images taken from the Webcam

Clip Art Dataset [39] is shown in Figure 12. The experiments show that, our method outperforms the

methods in [5] and [2], with our cues and our entire estimation process being quite different.

5 Conclusion and discussion

In this paper, we proposed a novel method for single image-based illumination estimation to light virtual

objects in real scenes. The main contribution of our work is the integration of the coarse information

estimated by scene understanding to estimate scene illumination. Using current scene understanding

technologies and normal and semantic constraints, we have shown convincing results comparable with

the state of the art.

Discussion and future work. In our current work, we use a simple local illumination model.

Although, light source directions are estimated well, the shadow chromaticity is sometimes not very

convincing compared with the directions (see Figure 6 and Figure 10). The global illumination model

can be employed to estimate more complex illumination. However, more parameters such as materials

and greater estimation accuracy are required using future scene understanding technologies. This is a

trend for illumination estimation work.

The illumination parameters of a scene including lighting intensity and direction are objective quanti-

ties. Synthesized images with known illumination parameters provide good ground truths. However, the

training dataset of the estimation method for coarse geometry, semantic labels, and intrinsic components

are all real images. Thus, in our future work, we will use synthesized data for our new training dataset

to validate our method. Video illumination estimation based on scene understanding is also seen as a

future work.
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38 J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and theory,” in Numerical Analysis, G. A. Watson,

Ed. Berlin: Springer, 1977, pp. 105–116.

39 J.-F. Lalonde, A. A. Efros, and S. G. Narasimhan, “Webcam clip art: Appearance and illuminant transfer from time-

lapse sequences,” ACM Transactions on Graphics (SIGGRAPH Asia 2009), vol. 28, no. 5, December 2009.

40 A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular images,” in NIPS, 2005.

41 J. T. Barron and J. Malik, “Shape, albedo, and illumination from a single image of an unknown object,” in CVPR,

2012.

42 K. Hara, K. Nishino, and K. Ikeuchi, “Determining reflectance and light position from a single image without distant

illumination assumption,” in Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume

2, ser. ICCV ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 560–.

43 I. Sato, Y. Sato, and K. Ikeuchi, “Illumination from shadows,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 25, pp. 290–300, 2003.

44 R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground-truth dataset and baseline evaluations for

intrinsic image algorithms,” in International Conference on Computer Vision, 2009, pp. 2335–2342.


